HFR1 Is Crucial for Transcriptome Regulation in the Cryptochrome 1-Mediated Early Response to Blue Light in Arabidopsis thaliana

نویسندگان

  • Xiao-Ning Zhang
  • Yingjie Wu
  • John W. Tobias
  • Brian P. Brunk
  • Gerald F. Deitzer
  • Dongmei Liu
چکیده

Cryptochromes are blue light photoreceptors involved in development and circadian clock regulation. They are found in both eukaryotes and prokaryotes as light sensors. Long Hypocotyl in Far-Red 1 (HFR1) has been identified as a positive regulator and a possible transcription factor in both blue and far-red light signaling in plants. However, the gene targets that are regulated by HFR1 in cryptochrome 1 (cry1)-mediated blue light signaling have not been globally addressed. We examined the transcriptome profiles in a cry1- and HFR1-dependent manner in response to 1 hour of blue light. Strikingly, more than 70% of the genes induced by blue light in an HFR1-dependent manner were dependent on cry1, and vice versa. High overrepresentation of W-boxes and OCS elements were found in these genes, indicating that this strong cry1 and HFR1 co-regulation on gene expression is possibly through these two cis-elements. We also found that cry1 was required for maintaining the HFR1 protein level in blue light, and that the HFR1 protein level is strongly correlated with the global gene expression pattern. In summary, HFR1, which is fine-tuned by cry1, is crucial for regulating global gene expression in cry1-mediated early blue light signaling, especially for the function of genes containing W-boxes and OCS elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling.

Photomorphogenesis is regulated by red/far-red light-absorbing phytochromes and blue/UV-A light-absorbing cryptochromes. We isolated an Arabidopsis thaliana blue light mutant, short hypocotyl under blue1 (shb1), a knockout allele. However, shb1-D, a dominant allele, exhibited a long-hypocotyl phenotype under red, far-red, and blue light. The phenotype conferred by shb1-D was caused by overaccum...

متن کامل

Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis.

Arabidopsis thaliana seedlings undergo photomorphogenesis in the light and etiolation in the dark. Long Hypocotyl in Far-Red 1 (HFR1), a basic helix-loop-helix transcription factor, is required for both phytochrome A-mediated far-red and cryptochrome 1-mediated blue light signaling. Here, we report that HFR1 is a short-lived protein in darkness and is degraded through a 26S proteasome-dependent...

متن کامل

DNA targets of the light regulated transcription factor PIF1 in Arabidopsis thaliana

The phytochrome-mediated regulation of photomorphogenesis under red and far-red light conditions involves both positive and negatively acting factors. The positively acting factors (e.g., HY5/HFR1/LAF1 and others) are degraded in the dark to prevent photomorphogenesis. By contrast, the negatively acting factors (e.g., PIFs) are degraded in response to light to promote photomorphogenesis. Here w...

متن کامل

Integration of Phytochrome and Cryptochrome Signals Determines Plant Growth during Competition for Light

Plants in dense vegetation perceive their neighbors primarily through changes in light quality. Initially, the ratio between red (R) and far-red (FR) light decreases due to reflection of FR by plant tissue well before shading occurs. Perception of low R:FR by the phytochrome photoreceptors induces the shade avoidance response [1], of which accelerated elongation growth of leaf-bearing organs is...

متن کامل

Arabidopsis Casein Kinase1 Proteins CK1.3 and CK1.4 Phosphorylate Cryptochrome2 to Regulate Blue Light SignalingC

Casein kinase1 (CK1) plays crucial roles in regulating growth and development via phosphorylating various substrates throughout the eukaryote kingdom. Blue light is crucial for normal growth of both plants and animals, and blue light receptor cryptochrome2 (CRY2) undergoes blue light–dependent phosphorylation and degradation in planta. To study the function of plant CK1s, systematic genetic ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008